
TWO THEOREMS ON THE VANISHING OF EXT

ABSTRACT. We prove two theorems on the vanishing of Ext over commutative Noetherian local rings.
Our first theorem shows that there are no Burch ideals which are rigid over non-regular local domains. Our
second theorem reformulates a conjecture of Huneke-Wiegand in terms of the vanishing of Ext, and high-
lights its relation with the celebrated Auslander-Reiten conjecture. We also discuss several consequences
of our results, for example, about the rigidity of the Frobenius endomorphism in prime characteristic p and
a generalization of a result of Araya.

1. INTRODUCTION

Throughout, unless otherwise stated, R denotes a commutative Noetherian local ring with unique
maximal ideal m and residue field k, and modules over R are assumed to be finitely generated.

An R-module M is called rigid if Ext1R(M,M) = 0. We say M has rank provided that there is an
integer r ≥ 0 such that Mp

∼= R⊕r
p for all p∈ Ass(R), that is, for all associated primes p of R. The torsion

submodule of M is the kernel of the natural homomorphism M → Q(R)⊗R M, where Q(R) is the total
quotient ring of R. The module M is called torsion-free if its torsion submodule is zero, and torsion if
its torsion submodule equals itself. It follows that M is torsion-free if and only if every non zero-divisor
on R is a non-zerodivisor on M, and M is torsion if and only if Mp = 0 for all p ∈ Ass(R); see [19, 3.8].

In this paper we are concerned with the Gorenstein case of a long-standing conjecture of Huneke and
Wiegand; see [31, page 473] and also [12, 8.6].

Conjecture 1.1. (Huneke-Wiegand) Let R be a one-dimensional Gorenstein ring and let M be a torsion-
free R-module that has rank. If M is rigid, then M is free.

The rank and one-dimensional hypotheses are necessary for Conjecture 1.1 which is wide open in
general, even for complete intersection rings of codimension two; see, for example, [12]. On the other
hand there are affirmative answers over several classes of rings and for quite a few examples of modules.
For example, a result of Huneke-Wiegand [31, 3.1], in view of [10, 2.13], implies that Conjecture 1.1 is
true over hypersurface rings. We refer the reader to [9, 10, 12, 17, 21, 26, 29, 37] for details and further
examples concerning the conjecture.

The aim of this paper is twofold: we prove two theorems, namely Theorem 1.2 and Theorem 1.5, and
make progress on Conjecture 1.1 from two different perspectives. As a byproduct, we also generalize a
theorem of Araya which considers maximal Cohen-Macaulay modules over Gorenstein rings; see A.1.

Dey and Kobayashi [17, 3.1] extended the definition of a Burch ideal [15] to a Burch module: an
R-module M is said to be Burch if it is an R-submodule of an R-module T such that m(M :T m)⊈mM.
As each Burch ideal is a Burch module, examples of Burch modules are abundant in the literature; see
2.4. Burch ideals, Burch modules, and Burch rings, as well as related topics, have recently garnered
significant attention; see [13, 15, 16, 22]

Our first theorem establishes Conjecture 1.1 for Burch modules and show that, over one-dimensional
non-regular local domains, there are no ideals that are both Burch and rigid. In fact our result is more
general and shows the following; see Theorem 2.14.

2020 Mathematics Subject Classification. Primary 13D07; Secondary 13A35, 13C12, 3D05, 13H10.
Key words and phrases. Burch modules, Ulrich modules, rigid modules, Frobenius endomorphism, Auslander-Reiten Con-

jecture, Huneke-Wiegand Conjecture, vanishing of Ext.
1
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Theorem 1.2. Let M be a torsion-free R-module which has rank. If M is Burch and rigid, then M is
free, and R is a field or a discrete valuation ring.

In view of Theorem 1.2, it is worth noting the following: if M is a Burch module over a ring R,
then the vanishing of Exti+1

R (M,M) and Exti+2
R (M,M) for some i ≥ 0 implies that pdR(M)< ∞; see [17,

3.16(2)]. However, if M is a Burch module over R, even if M is an ideal and R is a one-dimensional
domain, it is not known, in general, whether the vanishing of Ext j

R(M,M) for some j ≥ 2 forces M to
have finite projective dimension.

If R and M are as in Conjecture 1.1, it follows that M is rigid if and only if M⊗R M∗ is torsion-free,
where M∗ = HomR(M,R); see 3.5(i). Hence, as a consequence of Theorem 1.2, we obtain:

Corollary 1.3. Let R be a one-dimensional Gorenstein ring and let M be an R-module which has rank.
Assume M and M⊗R M∗ are both torsion-free. If M is Burch, then R is regular and M is free.

If R is a one-dimensional F-finite Cohen-Macaulay local ring of prime characteristic p, and if eR is
rigid for some e≫ 0, then it follows from [45, 6.10] that R is a discrete valuation ring. As a consequence
of Theorem 1.2, we are able to extend this result and prove the following corollary in section 2; see also
2.4(vi) and Remark 2.16.

Corollary 1.4. Let R be an equi-dimensional reduced ring of prime characteristic p with depth(R) = 1.
Assume R is F-finite, for example, R is excellent and k is perfect. If eR is rigid for some e ≫ 0, then R is
a discrete valuation ring.

The commutative version of the celebrated Auslander-Reiten conjecture [6] claims that each R-
module M must be free if ExtiR(M,M) = ExtiR(M,R) = 0 for all i ≥ 1. It is known that, if Conjecture
1.1 holds, then the Auslander-Reiten conjecture holds over each Gorenstein local domain (of arbitrary
dimension); see [12, 8.6] for the details. The second theorem we prove generalizes this fact and shows
that Conjecture 1.1 implies a stronger conclusion over Gorenstein local domains:

Theorem 1.5. The following conditions are equivalent:

(a) Conjecture 1.1 holds over each (one-dimensional Gorenstein local) domain.
(b) Whenever R is a d-dimensional Gorenstein domain and M is a torsion-free R-module such that

ExtiR(M,M) = 0 for all i = 1, . . . ,d, it follows that M is free.

In view of the foregoing discussion, Theorem 1.5 yields the following observation:

Corollary 1.6. The Auslander-Reiten conjecture holds over each Gorenstein local domain (of arbitrary
dimension) if the following condition holds: Whenever R is a d-dimensional Gorenstein domain and M
is a torsion-free R-module such that ExtiR(M,M) = 0 for all i = 1, . . . ,d, it follows that M is free.

Let us note the following result concerning Theorem 1.5: if R is a d-dimensional Gorenstein local
ring with d ≥ 1, M is a torsion-free R-module such that Mp is free over Rp for all prime ideals p of
height at most one, and ExtiR(M,M) = 0 for i = 1, . . . ,d −1, then M is free; see Corollary A.4.

The main ingredient of the proof of Theorem 1.5 is Proposition 3.2. A byproduct of that proposition,
along with a result of Kimura [32], allows us to prove the following in the appendix.

Proposition 1.7. Let R be a ring such that d = depth(R) ≥ 1 and let M be an R-module. Assume the
following hold:

(i) pdRp
(Mp)< ∞ for all p ∈ Spec(R)−{m}.

(ii) M is torsion-free.
(iii) G-dimR(M)< ∞

If Extd−1
R (M,M) = 0, then pdR(M)≤ d −2.
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Proposition 1.7 was initially proved by Araya [1] for the case where R is Gorenstein and M is max-
imal Cohen-Macaulay; see 3.1 and A.1. We also prove a variation of Proposition 1.7 by replacing the
finite Gorenstein dimension hypothesis on M with the assumption of the vanishing of ExtiR(M,R) for all
i = d, . . . ,2d +1 under mild additional conditions; see Proposition A.6 and Corollary A.7.

2. PROOF OF THEOREM 1.2

In this section we prove Theorem 1.2. First we recall some examples of Burch ideals and modules,
and prepare auxiliary results which play an important role in the proof of the theorem.

2.1. Let M be an R-module. Then M is said to be a Burch R-submodule of an R-module T provided that
m(M :T m)⊈mM; if such a module T exists, we simply call M a Burch R-module; see [17, 3.1]. Note
that, by definition, a Burch module is nonzero.

We need the following properties in the sequel:

2.2. Let M be an R-module.
(i) If depthR(M)≥ 1, then M is Burch if and only if there is an x ∈m such that x is a non zero-divisor

on M and k is a direct summand of M/xM; see [17, 3.6 and 3.9].
(ii) If M is Burch and pdR(M)< ∞ (or idR(M)< ∞), then R is regular; see [17, 3.19].

There are many examples of Burch ideals and modules. Here we record a few of them:

Example 2.3. If R = k[[t4, t5, t6]] and I = (t17, t19, t20), or R = k[[x,y]] and I = (x5,x3y,xy3,y5), then I is
Burch; see [11, 4.4 and 4.5] and also cf. Example 2.18.

2.4. Let I be an ideal of R and let M be an R-module.
(i) If depth(R)≥ 1 and I is integrally closed, then I is Burch; see [11, 2.2(4)].

(ii) If R is not a field, |k|= ∞, depth(R/I) = 0, and I is integrally closed, then I is Burch; see [22, 4.6].
(iii) If M is an R-submodule of an R-module T such that (mM :T m)⊆ M and depthR(T/M) = 0, then

M is a Burch submodule of T ; see [17, 4.3].
(iv) If mM ̸= 0, for example, if depthR(M)≥ 1, then mM is Burch; see [17, 3.4].
(v) If M is a Burch R-submodule of an R-module T , then

(
M+xT [x]

)
(m,x) is a Burch S-submodule of

the S-module T [x](m,x), where S = R[x](m,x); see [22, 4.8(2)].
(vi) If R is of prime characteristic p, F-finite, and depth(R) = 1, then eR is Burch for all e ≫ 0 (here

eR denotes the R-module whose underlying abelian group is R, and the R-action on eR is given by
r · x = rpe

x for r ∈ R and x ∈ eR); see 2.2(i) and [44, 3.3].

2.5. A Cohen-Macaulay R-module N is called Ulrich [25, 2.1] if the minimal number of generators
µR(N) of N equals the (Hilbert-Samuel) multiplicity eR(N) of N. Here

eR(N) = t! · lim
n→∞

lengthR(N/mnN)

nt , where t = dimR(N).

Ulrich modules were initially defined in [7] as maximally generated maximal Cohen-Macaulay mod-
ules. Such modules were studied extensively in the literature; see, for example, [23] for details.

Let N be a one-dimensional Cohen-Macaulay R-module. It follows from [17, 3.4 and 5.2] that, if N
is Ulrich, or equivalently, N ∼= mN, then N is Burch. On the other hand, if N is Burch, then it does not
need to be Ulrich. For example, if R is a one-dimensional Cohen-Macaulay ring which does not have
minimal multiplicity, that is, e(R)> µR(m) [39], and N =m, then N is Burch but not Ulrich. Similarly,
if R is a one-dimensional non-regular Cohen-Macaulay ring and N = R⊕m, then N is Burch, but it is
not an Ulrich R-module (since R is not Ulrich, or equivalently, since R is not regular).

Finally, we remark that for maximal Cohen-Macaulay Ulrich modules over one-dimensional local
domains, the result analogous to Corollary 1.3 follows from [17, 7.4(1) and 5.2].
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Recall that R is said to be Henselian if each commutative module-finite R-algebra is a direct product
of local rings. Hensel’s Lemma determines an important class of Henselian rings: If R is complete, then
R is Henselian; see [35, 1.9] and also [35, A.30] for a list of equivalent conditions for a local ring to be
Henselian.

The following observation plays an important role for the proof of Theorem 2.14.

Lemma 2.6. Let R be a Henselian ring, N an indecomposable rigid R-module, and let x ∈ m be a non
zero-divisor on N. Then N/xN is an indecomposable R-module. Therefore, if there is a nonzero cyclic
R-module which is a direct summand of N/xN as an R-module, then N is cyclic.

Proof. Note, as Ext1R(N,N) = 0, the short exact sequence 0 → N x−→ N → N/xN → 0 gives the short
exact sequence 0→HomR(N,N)

x−→HomR(N,N)→HomR(N,N/xN)→ 0. This yields an isomorphism
HomR(N,N/xN) ∼= EndR(N)/xEndR(N). It follows, since HomR(N,N/xN) ∼= EndR/xR(N/xN), that
there is a ring isomorphism EndR/xR(N/xN)∼= EndR(N)/xEndR(N). Note, since R is Henselian and N
is indecomposable, we know that EndR(N) is a local ring; see [35, 1.8]. So we see that EndR/xR(N/xN)
is a local ring. Thus N/xN is an indecomposable R-module.

If there is a nonzero cyclic R-module, say L, which is a direct summand of N/xN as an R-module,
then N/xN ∼= L so that µR(N) = µR(N/xN) = µR(L) = 1, that is, N is cyclic, as claimed. □

In general, if the maximal ideal m is rigid, that is, if Ext1R(m,m) = 0, then R is regular. This fact
follows, for example, from [14, 3.1.1 and 3.1.2]. Here, we provide a brief but alternative justification.

Lemma 2.7. The following implications hold: R is regular if and only if idR(m) < ∞ if and only if
ExtnR(m,m) = 0 for some n ≥ 0.

Proof. It suffices to assume ExtnR(m,m) = 0 for some n ≥ 0, and show that idR(m) < ∞; see [45, 4.5,
7.1, and page 659]. We may assume n ≥ 1. Note, as ExtnR(m,m) = 0, we have that Extn+1

R (k,m) = 0. If
depth(R) ≥ 1, then the depth lemma yields depthR(m) = 1. Moreover, if depth(R) = 0, one can check
that depthR(m) = 0. Thus, in either case, n+1 ≥ depthR(m). Consequently, we use [38, Thm. 2] along
with the vanishing of Extn+1

R (k,m) = 0, and conclude that idR(m)< ∞. □

In passing, we point out that the rigidity hypothesis is needed in Lemma 2.6.

Remark 2.8. Let R be a non-regular domain. Then m is not a rigid R-module; see Lemma 2.7. More-
over, since R is a domain, each nonzero proper ideal of R is indecomposable. In particular, m is an
indecomposable R-module. On the other hand, if x ∈ m−m2, then the R-module m/xm is decompos-
able; see, for example, [43, 5.3] or [45, 7.11].

Remark 2.9 ([19, 3.8]). Let M be an R-module. Then
⋃

AssR(M) ⊆
⋃

Ass(R) if and only if M is
torsion-free. Moreover, if R has no embedded primes and M is torsion-free, then Mp is torsion-free over
Rp for all p ∈ Spec(R).

Next we prepare a proposition to facilitate the proof of Theorem 2.14. Note that gradeR(N) denotes
the common length of a maximal R-regular sequence in AnnR(N) of a given R-module N; see [8, 1.2.6].

Proposition 2.10. Let R be a Henselian ring and let M be an R-module. Assume M is Burch, rigid,
and depthR(M) ≥ 1. Then M has a direct summand N such that N is Cohen-Macaulay, cyclic, rigid,
dimR(N) = 1, and mN ∼= N. Moreover, if M is torsion-free, then grade(N) = 0 and depth(R)≤ 1.

Proof. Note that, since M is Noetherian, we can write M ∼=
⊕n

i=1 Mi for some nonzero indecomposable
R-modules M1, . . . ,Mn. As M is Burch and depthR(M)≥ 1, there is an x ∈ m such that x is a non zero-
divisor on M and k is a direct summand of M/xM; see 2.2(i). Therefore we have M/xM ∼=

⊕n
i=1 Mi/xMi.

As k is a direct summand of M/xM and k is indecomposable, we see by the Krull–Schmidt theorem [35,
1.8] that k is a direct summand of M j/xM j for some j, where 1 ≤ j ≤ n. Set N = M j.
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As M is rigid and N is a direct summand of M, we see that N is rigid too. Moreover x is a non zero-
divisor on N. So N is cyclic by Lemma 2.6. This implies that N/xN is a cyclic R-module and therefore
it is an indecomposable R-module. As k is a direct summand of N/xN, we conclude that k ∼= N/xN.
This shows that N is a Cohen-Macaulay R-module with dimR(N) = 1; see [8, 2.1.2(c) and 2.1.3(a)].
Moreover m(N/xN) = 0 so that mN = xN ∼= N. This proves the first statement.

Next assume M is torsion-free. Then N is also torsion-free. Therefore, if gradeR(N)> 0, then N∗ = 0
so that N = 0; see [8, 1.2.3(b)]. This proves gradeR(N) = 0.

Let p ∈ AssR(N). Then, as N is torsion-free, there is an q ∈ Ass(R) such that p⊆ q; see Remark 2.9.
Thus, we have that depth(R)≤ dim(R/q)≤ dim(R/p) = dimR(N) = 1; see [8, 1.2.13 and 2.1.2]. □

Proposition 2.10, in view of 2.5, yields the following relation between Burch and Ulrich modules:

Corollary 2.11. Let R be a Henselian ring and let M be an R-module such that M is Burch, rigid,
and depthR(M) ≥ 1. Then M has a direct summand N, where N is a cyclic Ulrich R-module with
dimR(N) = 1.

We need a few more observations prior to giving a proof of the main theorem of this section.

2.12. Let M be an R-module. Let (̂−) denote the m-adic completion functor.

(a) Assume M is Burch, that is, M is an R-submodule of an R-module T such that m(M :T m) ⊈ mM.
Set X = m(M :T m) and Y = mM. If X̂ ⊆ Ŷ , then X̂ ∩ Ŷ = X̂ ∩Y = X̂ so that X ∩Y = X , that is,
X ⊆ Y . Hence X̂ ⊈ Ŷ so that M̂ is Burch over R̂.

(b) If M is torsion-free, or equivalently, if
⋃

AssR(M)⊆
⋃

Ass(R), then we do not know whether or not
M̂ must be torsion-free over R̂. On the other hand, we discuss two affirmative cases:

(i) Assume M is torsion-free and generically free. Then M embeds into a free R-module. Hence,
M̂ embeds into a free R̂-module so that M̂ is torsion-free over R̂.
To see this, consider the exact sequence 0 → Ext1R(TrR M,R)→ M

ψ−→ M∗∗, where TrR M and
M∗ denote the Auslander transpose of M and HomR(M,R), respectively; see [40, Prop. 5].
Here, ψ is defined as ψ(x)( f ) = f (x) for all x ∈ M and f ∈ M∗. If p ∈ Ass(R), then Mp is
free and hence Ext1R(TrR M,R)p ∼= Ext1Rp

(TrRp Mp,Rp) = 0; see [40, Pages 5788-5789]. This
implies that Ext1R(TrR M,R) is a torsion module. As M is torsion-free and Ext1R(TrR M,R)
embeds into M, we see that Ext1R(TrR M,R) = 0 and ψ is injective. Pick a free R-module F

and a surjection π : F → M∗. Then, dualizing π , we obtain M
ψ

↪−→ M∗∗ π∗
↪−−→ F∗ ∼= F . This

gives an injection M̂ ↪→ F̂ , and proves that M̂ is torsion-free over R̂.
(ii) In general, if AssR(M) ⊆ Ass(R), then AssR̂(M̂) ⊆ Ass(R̂); see [41, 23.2]. Hence, if M is

torsion-free and Ass(R) = Min(R), then AssR(M)⊆ Min(R) so that M̂ is torsion-free over R̂;
see Remark 2.9.

(c) Assume M has rank, say r. Let q ∈ Ass(R̂) and set p= q∩R. Then depth(Rp)≤ depth(R̂q) = 0; see
[8, 1.2.16]. Hence M̂q

∼= Mp⊗Rp R̂q
∼= R̂⊕r

q . This shows that M̂ has rank r over R̂.

The next result stems from the arguments of Levin-Vasconcelos [36].

2.13. Let M and N be R-modules such that M has rank and gradeR(N) = 0. If ExttR(M,mN) = 0, then
pdR(M)< t; see [17, 2.6(6)].

Next is our main result in this section:

Theorem 2.14. Let M be an R-module which is Burch, rigid, and torsion-free.

(i) If Ass(R) = Min(R), then depth(R)≤ 1, that is, R is either Artinian or depth(R) = 1.
(ii) If M has rank, then M is free, and R is either a field or a discrete valuation ring.
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Proof. If Ass(R) = Min(R) or M has rank, then M̂ is torsion-free over R̂; see 2.12(b)(ii). Therefore,
by considering M̂ over R̂, we may assume R is Henselian and M is a Burch, rigid, and torsion-free
R-module; see 2.12(a) and [35, 1.9 and 1.10]. Hence, Proposition 2.10 shows that depth(R)≤ 1 and M
has a direct summand N such that mN ∼= N and gradeR(N) = 0.

As M is rigid, we have that Ext1R(M,N) = Ext1R(M,mN) = 0. Hence, if M has rank, then 2.13 implies
that M is free. Thus we conclude from 2.2(ii) that R is a field or a discrete valuation ring. □

The rank hypothesis in Theorem 2.14(ii) is necessary; we can see this by the following example.

Example 2.15. Let R = k[[x,y]]/(xy) and M = R/(x). Then M ∼= k[[y]]. Hence depthR(M) = 1, y is a
non zero-divisor on M, and k ∼= M/yM. Therefore, M is a Burch R-module; see 2.2(ii). Moreover M is
rigid, but M does not have rank since Mp ̸= 0 = Mq, where p= (x) and q= (y).

Next we prove Corollary 1.4 advertised in the introduction:

Proof of Corollary 1.4. Note that eR is a torsion-free R-module. Note also that, since R is reduced, Rp is
a field for each p ∈ Ass(R). Hence eR has rank for e ≫ 0; see [34, 2.3 and 2.4]. Hence the claim follows
from 2.4(vi) and Theorem 2.14(ii). □

Remark 2.16. As mentioned in the introduction, if R is a one-dimensional F-finite Cohen-Macaulay
local ring of prime characteristic p, and if eR is rigid for some e ≫ 0, then it follows from [45, 6.10]
that R is regular. The proof of [45, 6.10] relies upon a result of Koh-Lee [33, 2.6]: If R is as before and
if TorR

n (M, eR) = 0 for some R-module M and n ≥ 1, then pdR(M)< ∞; see also [45, A.3]. Let us note
that, under the setup of Corollary 1.4 we do not know whether or not eR enjoys a similar property. For
example, if R = Fp[[x4,x3y,xy3,y4]], then R is an F-finite local domain of depth one and dimension two;
in that case [45, 6.10] does not apply, but Corollary 1.4 shows that eR is not rigid for all e ≫ 0.

Recall that, over a one-dimensional Gorenstein domain R, Conjecture 1.1 is equivalent to the follow-
ing statement: if M is a torsion-free R-module such that M ⊗R M∗ is torsion-free, then M is free. To
address the conjecture, Celikbas-Kobayashi [11] proved the following result; see also [17, 7.4(2)] for a
similar result for modules.

2.17. ([11, 1.3 and 3.8]) Let R be a one-dimensional local domain which is not regular, and let I and J
be ideals of R. If 0 ̸= I ⊆mJ and (I :R J) = (mI :R mJ), then I is Burch and I⊗R I∗ has nonzero torsion.

In passing let us note that there are examples of ideals I over one dimensional non-regular local rings
R such that 0 ̸= I ⊆ mJ and (I :R J) = (mI :R mJ) for some proper ideal J of R; see, for example, [11,
4.3]. On the other hand, there can be Burch ideals I for which this equality does not hold for any J with
0 ̸= I ⊆mJ. Next we give such an example. This example indicates that Theorem 1.2 is not subsumed
by the result stated in 2.17.

Example 2.18. Let R= k[[t4, t5, t6]] and I = (t5, t8). Then m2 = (t8, t9, t10, t11) and mI = (t9, t10, t11, t12).
Claim 1: I is Burch, that is, m(I :R m)⊈mI.

Proof of Claim 1: As m2 ⊆ I, it follows that m⊆ (I :R m) and so m=(I :R m). Thus m(I :R m)=m2 ⊈mI
as t8 ∈m2 but t8 /∈mI.

Claim 2: For each ideal J of R such that 0 ̸= I ⊆mJ, then (I :R J) ̸= (mI :R mJ).
Proof of Claim 2: Let J be an ideal of R such that I ⊆ mJ. If J ̸= R, then I ⊆ m2 since J ⊆ m,
but that is not true because t5 /∈ m2. So J = R, and we need to justify I = (I :R R) ̸= (mI :R m), or
equivalently, (mI :R m) ⊈ I. We can see this as follows: t6 /∈ I, but on the other hand t6 ∈ (mI :R m)

since t6m= (t10, t11, t12)⊆mI.

It is known that Conjecture 1.1 holds for ideals over rings of the form k[[ta, ta+1, . . . , t2a−2]] if k is a
field and a ≥ 3; see [26, 1.6]. Hence, the fact that I in Example 2.18 is not rigid can be deduced by [26,
1.6] or by Theorem 1.2 since it is a Burch ideal.
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3. PROOF OF THEOREM 1.5

The main purpose of this section is to prove Theorem 1.5 and formulate Conjecture 1.1 in terms
of the vanishing of Ext over Gorenstein local domains. Our argument shows that Conjecture 1.1 is
indeed equivalent to a stronger version of a celebrated conjecture of Auslander and Reiten [6]; see the
paragraph preceding Theorem 1.5.

The proof of Theorem 1.5 requires some preparation. For that we prove two propositions, each of
which deals with modules that have finite Gorenstein dimension.

3.1. ([4]) An R-module M is said to be totally reflexive if the natural map M → M∗∗ is bijective and
ExtiR(M,R) = 0 = ExtiR(M

∗,R) for all i ≥ 1. If M ̸= 0, then the infimum of n for which there exists an
exact sequence 0 → Xn →···→ X0 → M → 0, where each Xi is totally reflexive, is called the Gorenstein
dimension of M. If M has Gorenstein dimension n, we write G-dimR(M) = n. Therefore, M is totally
reflexive if and only if G-dimR(M)≤ 0, where it follows by convention that G-dimR(0) =−∞.

In the rest of the paper we use the following properties freely.
(i) R is Gorenstein if and only if G-dimR(M)< ∞ for each R-module M.

(ii) G-dimR(M)≤ pdR(M), and G-dimR(M) = pdR(M) if pdR(M)< ∞.
(iii) Assume M ̸= 0. If G-dimR(M)< ∞, then G-dimR(M)+depthR(M) = depth(R). Therefore, if R is

Cohen-Macaulay and M is totally reflexive, then M is maximal Cohen-Macaulay.
(iv) G-dimRp(Mp)≤ G-dimR(M) for all p ∈ Spec(R).

The next result is key for our argument.

Proposition 3.2. Let M be an R-module. Assume d = depth(R)≥ 2 and the following:
(a) G-dimR(M)≤ d −1.
(b) pdRp

(Mp)< ∞ for each p ∈ Spec(R)−{m}.
Then there exists an exact sequence of R-modules 0 → Y → X → M → 0 such that the following hold:

(i) X is totally reflexive and locally free on Spec(R)−{m}.
(ii) pdR(Y )≤ d −2.

(iii) ExtdR(M,M)∼= ExtdR(X ,X).
(iv) If Extd−1

R (M,M) = 0, then Extd−1
R (X ,X) = 0.

Proof. It follows, since G-dimR(M)< ∞, that there is a short exact sequence of R-modules

(3.2.1) 0 → Y → X → M → 0,

where pdR(Y )< ∞ and X is totally reflexive; see [5, 1.1] and also [28, 2.10]. As pdRp
(Mp)< ∞ for each

p ∈ Spec(R)−{m}, it follows that X is locally free on Spec(R)−{m}. Note also depthR(M)≥ 1 since
G-dimR(M)≤ d −1.

If depthR(M)≥ d, then the depth lemma applied to the exact sequence 0 →Y → X → M → 0 shows
that depthR(Y )≥ d; so, in this case, Y is free since pdR(Y )<∞. On the other hand, if depthR(M)≤ d−1,
then, since depthR(M)≥ 1, we can use the depth lemma once more along with the exact sequence (3.2.1)
and see that depthR(Y ) = depthR(M)+1 ≥ 2. Hence, regardless of what the depth of M is, we have that
pdR(Y )≤ d −2.

The exact sequence (3.2.1) yields the following exact sequences for each i ≥ 1:

(3.2.2) ExtiR(X ,Y )→ ExtiR(X ,X)→ ExtiR(X ,M)→ Exti+1
R (X ,Y ),

and

(3.2.3) ExtiR(M,M)→ ExtiR(X ,M)→ ExtiR(Y,M)→ Exti+1
R (M,M)→ Exti+1

R (X ,M)→ Exti+1
R (Y,M).

Note that Ext j
R(X ,Y ) = 0 for all j ≥ 1 since pdR(Y )< ∞ and X is totally reflexive; see [4, 4.12]. So

(3.2.2) gives:

(3.2.4) ExtiR(X ,X)∼= ExtiR(X ,M) for each i ≥ 1.
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Note that, since pdR(Y )≤ d −2, we have Extd−1
R (Y,M) = ExtdR(Y,M) = 0. Hence, setting i = d −1

in (3.2.3), we obtain from (3.2.3) and (3.2.4) that:

(3.2.5) ExtdR(M,M)∼= ExtdR(X ,M)∼= ExtdR(X ,X).

Now assume Extd−1
R (M,M) = 0. Then, as Extd−1

R (Y,M) = 0, we see from (3.2.3) that Extd−1
R (X ,M)

vanishes. So (3.2.4) shows that Extd−1
R (X ,X) = 0, as required. □

We recall a few facts for the proof of Proposition 3.6.

3.3. An R-module M is said to satisfy Serre’s condition (Sn) for some integer n ≥ 0 provided that
depthRp

(Mp) ≥ min{n,dim(Rp)} for all p ∈ Spec(R); see [20, page 3] (note that there are different
versions of Serre’s condition; cf. [8, page 63]).

If R is Gorenstein, then M satisfies (S2) if and only if M is reflexive if and only if M is a second
syzygy module; see [20, 3.6]

3.4. Let M be a nonzero R-module. If pdR(M) = n < ∞, then ExtnR(M,M) ̸= 0; see [41, Lemma 1(iii),
page 154].

3.5. Let R be a d-dimensional Cohen-Macaulay local ring with canonical module ωR, and let M and N
be R-modules. If N is maximal Cohen-Macaulay such that M or N† is locally free on Spec(R)−{m},
then ExtiR(M,N)∼= ExtiR(N

† ⊗R M,ωR) for all i = 0, . . . ,d, where N† = HomR(N,ωR); see [24, 2.3].

Proposition 3.6. Let R be a d-dimensional Cohen-Macaulay local ring with a canonical module ωR.
Consider the following two conditions on R:

(i) Given a totally reflexive R-module M, if M has rank and M⊗R M† satisfies (S2), then M is free.
(ii) Given a torsion-free R-module N, if N has rank, G-dimR(N) < ∞, and ExtiR(N,N) = 0 for all

i = 1, . . . ,d, then N is free.
If Rp satisfies the condition in part (i) for all p ∈ Spec(R), then R satisfies the condition in part (ii).

Proof. Assume Rp satisfies the condition in part (i) for all p ∈ Spec(R). Let N be a torsion-free R-
module with rank such that G-dimR(N) < ∞ and ExtiR(N,N) = 0 for all i = 1, . . . ,d. We proceed by
induction on d to prove that N is free.

If d = 0, then N is free since it has rank. So we assume d = 1. Then, since N is totally reflexive and
locally free on Spec(R)−{m}, it follows from 3.5 that Ext1R(N,N) ∼= Ext1R(N ⊗R N†,ωR). Therefore
Ext1R(N ⊗R N†,ωR) = 0. Hence N ⊗R N† is maximal Cohen-Macaulay and so it satisfies (S2); see [8,
3.5.11(b)] and 3.3. Consequently, N is free by the hypothesis.

Next assume d ≥ 2. Then, by using the induction hypothesis, we may assume that N is locally free on
Spec(R)−{m}. It follows from Proposition 3.2 that there is an exact sequence 0 → Y → X → N → 0,
where X is totally reflexive and ExtdR(X ,X) = Extd−1

R (X ,X) = 0. Note that, since X is totally reflexive,
it is maximal Cohen-Macaulay; see 3.1(iii). Thus, by 3.5, we have that

ExtiR(X ⊗R X†,ωR)∼= ExtiR(X ,X) for i = d −1 and i = d.

Hence [8, 3.5.11(b)] implies that depthR(X ⊗R X†)≥ 2. As X is locally free on Spec(R)−{m}, we see
that X ⊗R X† satisfies (S2). So X is free by the hypothesis (i). Consequently, as pdR(Y )< ∞, it follows
that pdR(N)< ∞. Also, as ExtiR(N,N) = 0 for all i = 1, . . . ,d, we conclude by 3.4 that N is free. □

If R is a Noetherian integrally closed domain (not necessarily local) and M is a torsion-free R-module
such that M ⊗R M∗ is reflexive, then Auslander [3, 3.3] proved that M must be projective. In the local
case, his argument actually establishes the following result, for which we provide a proof for the conve-
nience of the reader; see also [12, 8.6].

3.7. (Auslander [3]) Let R be a local ring satisfying (S2) and let M be a torsion-free R-module such that
M⊗R M∗ is reflexive. If Mp is a free Rp-module for each prime ideal p of R of height at most one, then
M is free.
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Proof. Set X = M ⊗R M∗ and Y = HomR(M,M). We consider the map X α−→ Y , where α is defined as(
α(x⊗ f )

)
(z) = f (z)x for all x,z ∈ M and f ∈ M∗. Setting A = ker(α) and B = coker(α), we have

an exact sequence 0 → A → X α−→ Y → B → 0. Here, B is the quotient of Y by the submodule of all
homomorphisms M → M that factor through a free R-module. Hence, α is surjective if and only if M is
free; see, for example, [42, 3.8].

Let p∈ Ass(R). Then, since Mp is free over Rp, it follows that αp is surjective and so Bp = 0. Hence,

we have an exact sequence 0 → Ap → Xp
αp−→ Yp → 0. As Xp and Yp are free modules over Rp of the

same rank, we deduce that Ap = 0. Hence, A is torsion. Thus, A = 0 since X is a torsion-free R-module.
Suppose B ̸= 0 and pick q ∈ AssR(B). As Bq ̸= 0 and αp is surjective for each prime ideal p of R of

height at most one, it follows that dim(Rq) ≥ 2. Therefore, depth(Rq) ≥ 2 as R satisfies (S2). Hence,
Xq, being reflexive over Rq, has depth at least two. Note also that, since M is torsion-free, so is Y .
Furthermore, Yp is torsion-free over Rp for all p ∈ Spec(R) because R has no embedded primes; see
[19, 3.8]. Now, since depthRq

(Yq) ≥ 1 > 0 = depthRq
(Bq), the depth lemma applied to the short exact

sequence 0 → Xq →Yq → Bq → 0 implies that depthRq
(Xq) = depthRq

(Bq)+1 = 1. This contradiction
shows that B = 0. □

We are now ready to give a proof of Theorem 1.5:

Proof of Theorem 1.5. Assume first condition (b) holds. Let R be a one-dimensional Gorenstein local
domain and let N be a torsion-free R-module such that N ⊗R N∗ is torsion-free. Then it follows from
3.5 that Ext1R(N,N) = 0. Therefore, by our assumption, N is free. This shows that Conjecture 1.1 holds
over each Gorenstein domain.

Next assume condition (a) holds, namely, Conjecture 1.1 holds over each Gorenstein local domain.
Let R be a d-dimensional Gorenstein local domain, and let M be a torsion-free R-module such that
ExtiR(M,M) = 0 for all i = 1, . . . ,d. We claim that M is free.

Note that G-dimR(M)< ∞ as R is Gorenstein. Therefore M has all the properties stated in part (ii) of
Proposition 3.6. Consequently, to show M is free, it suffices to prove that Rp satisfies the condition of
part (i) of Proposition 3.6 for all p ∈ Spec(R).

For that let p ∈ Spec(R) and set S = Rp. Note that each module over S has rank since S is a domain.
Let X be a totally reflexive S-module such that X ⊗S X∗ satisfies (S2). Then, since S is Gorenstein, X
is a maximal Cohen-Macaulay S-module and X ⊗S X∗ is reflexive. It suffices to show that X is a free
S-module.

If dim(S) ≤ 0, then S is a field and hence X is free. If dim(S) = 1, then X is free because it is
assumed that Conjecture 1.1 holds over each one-dimensional local Gorenstein domain and S is such a
ring. Next suppose dim(S)≥ 2. Then, by the induction hypothesis on dim(S), we conclude that Xq is a
free Sq-module for each prime ideal q of S of height at most one. So 3.7 shows that X is free. □

APPENDIX A. ON A RESULT OF ARAYA

In this appendix we state some byproducts of our argument that are not directly related to Conjecture
1.1. In particular, we prove Proposition 1.7 which generalizes the following result of Araya:

A.1. ([1, Corollary 10]) Let R be a d-dimensional Gorenstein local ring, where d ≥ 1, and let M be an
R-module. Assume the following hold:

(i) M is locally free on Spec(R)−{m}.
(ii) M is maximal Cohen-Macaulay.

(iii) Extd−1
R (M,M) = 0.

Then M is free.

Araya’s result [1] shows that the Auslander-Reiten conjecture is straightforward over Gorenstein
isolated singularities. It also implies that the conjecture holds over Gorenstein normal domains, a result
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initially proved by Huneke and Jorgensen [30, 5.9]. Subsequently Kimura [32] removed the Gorenstein
hypothesis, and proved that the Auslander-Reiten conjecture holds over arbitrary normal domains. In
his paper Kimura also proved:

A.2. ([32, 2.8 and 2.10(3)]) Let R be a local ring such that d = depth(R)≥ 1, and let X be an R-module
such that Xp is a free Rp-module for all p ∈ Spec(R)−{m} and Extd−1

R (X ,X) = 0. Then X is free
provided that at least one of the following holds:

(i) ExtiR(X ,R) = 0 for all i = 1, . . . ,2d +1.
(ii) R satisfies (S2), ExtiR(X ,R) = 0 for all i = 1, . . .u, and ExtiR(TrR X ,R) = 0 for all i = 1, . . .v for

some integers u ≥ 0 and v ≥ 0 such that u+ v = 2d +1.

Next we use Proposition 3.2 and A.2(i), and give a proof for Proposition 1.7 which is advertised in
the introduction:

Proof of Proposition 1.7. We may assume d ≥ 2 and M ̸= 0. As M is torsion-free, it follows that
depthR(M)≥ 1 and hence G-dimR(M)≤ d−1. Then Proposition 3.2 gives an exact sequence 0 →Y →
X → M → 0, where X is totally reflexive, X is locally free on Spec(R)−{m}, and Extd−1

R (X ,X) = 0.
Thus A.2 implies that X is free. Hence pdR(M) ≤ d − 1. Moreover, since Extd−1

R (M,M) = 0, we see
from 3.4 that pdR(M) ̸= d −1. □

A consequence of Proposition 1.7 is:

Corollary A.3. Let R be a d-dimensional local Gorenstein ring, with d ≥ 1, and let I be an m-primary
ideal of R. Then Extd−1

R (I, I) ̸= 0.

Proof. As d ≥ 1 and I is an m-primary ideal of R, we have that I ̸= 0. So the natural short exact sequence
0 → I → R → R/I → 0 implies that depthR(I) = 1 since d ≥ 1 and R/I is a finite length R-module.

Suppose Extd−1
R (I, I) = 0. As I is a torsion-free R-module and Ip ∼= Rp for all p∈ Spec(R)−{m}, we

use Proposition 1.7 and conclude that pdR(I)≤ d −2. In that case, the Auslander-Buchsbaum formula
implies that depthR(I)≥ 2, which is not possible. Therefore, Extd−1

R (I, I) ̸= 0. □

In general we do not know whether or not M must be free if R is a d-dimensional Gorenstein local
domain and M is a torsion-free R-module such that ExtiR(M,M) = 0 for all i = 1, . . . ,d; this is the
context of Theorem 1.5. However, if M is locally free on the set X1(R) of all prime ideals p of R with
dim(Rp) ≤ 1, then the vanishing of ExtiR(M,M) for all i = 1, . . . ,d −1 is sufficient to conclude that M
is free. We record this observation which also extends [2, 1.6] for the case where n = 1.

Corollary A.4. Let R be a d-dimensional local ring satisfying (S1), where d ≥ 1, and let M be an
R-module. Assume the following hold:

(i) Mp is free over Rp for all p ∈ X1(R).
(ii) M is torsion-free.

(iii) ExtiR(M,M) = 0 for i = 1, . . . ,d −1.
If G-dimR(M)< ∞, then M is free.

Proof. There is nothing to prove if d = 1. Assume d ≥ 2. Then Mp is torsion-free over Rp since R
satisfies (S1) [19, 3.8]. Hence, by the induction hypothesis on d, we have that Mp is free over Rp for
all p ∈ Spec(R)−{m}. So Proposition 1.7 shows that pdR(M)≤ depth(R)−2. As ExtiR(M,M) = 0 for
i = 1, . . . ,d −1, we conclude that M is free; see 3.4. □

We prove an analog of Proposition 1.7 by replacing the finite Gorenstein dimension hypothesis on M
with the assumption of the vanishing of ExtiR(M,R) for i = 1, . . . ,d if R satisfies (S2) and M is locally
free on Spec(R)−{m}; see Corollary A.7. This follows from a more general result which we prove as
Proposition A.6; see also [27, 3.14]. In the proof we use A.2(ii) and the following auxiliary result:
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A.5. Let R be a local ring, M and N be R-modules, and let n ≥ 1. Assume Extn+1
R (M,R) = 0. Then the

canonical map ExtnR(M,N)→ ExtnR(ΩM,ΩN) induced by the syzygy sequence is surjective. Moreover,
if ExtnR(M,R) = 0, then ExtnR(M,N)∼= ExtnR(ΩM,ΩN); see, for example, [32, 2.6].

Proposition A.6. Let R be a local ring, with d = depth(R), M be an R-module, and let n ≥ 0 be an
integer such that d ≥ n+1. Assume the following hold:

(i) R satisfies (S2).
(ii) Mp is a free Rp-module for all p ∈ Spec(R)−{m} and depthR(M)≥ n.

(iii) Extd−1
R (M,M) = 0.

(iv) ExtiR(M,R) = 0 for min{d,d −n+2} ≤ i ≤ 2d −n+1.

Then pdR(M)< ∞.

Proof. The case where d = 1 is trivial since we assume Extd−1
R (M,M) = 0. Hence we assume d ≥ 2.

Note, since d ≥ min{d,d −n+2}, part (iv) implies:

(A.6.1) ExtiR(M,R) = 0 for i = d, . . . ,2d −n.

Therefore, in view of (A.6.1), the observation recorded in A.5 yields:

Extd−1
R (M,M)↠ Extd−1

R (ΩRM,ΩRM)∼= Extd−1
R (Ω2

RM,Ω2
RM)∼= · · · ∼= Extd−1

R (Ωd−n+1
R M,Ωd−n+1

R M).

As Extd−1
R (M,M) = 0, we conclude that Extd−1

R (Ωd−n+1
R M,Ωd−n+1

R M) = 0. We set X = Ω
d−n+1
R M.

Then it follows that

(A.6.2) Extd−1
R (X ,X) = 0.

We deduce from part (iv) that:

(A.6.3) Exti+d−n+1
R (M,R)∼= ExtiR(X ,R) = 0 for all i = 1, . . . ,d.

As Mp is a free Rp-module for all p ∈ Spec(R)−{m} and depthR(M)≥ n, it follows that M is an nth
syzygy module; see [18, 2.4]. So X is a (d +1)st syzygy module. Moreover Xp is a free Rp-module for
all p ∈ Spec(R)−{m} since so is Mp. Thus [40, Thm. 43] implies that

(A.6.4) ExtiR(TrR X ,R) = 0 for all i = 1, . . . ,d +1.

Finally we make use of (A.6.2), (A.6.3), and (A.6.4), and conclude from Kimura’s result A.2(ii) that X
is free. Consequently pdR(M)< ∞. □

Next is a corollary of Proposition A.6 which establishes a variation of Proposition 1.7.

Corollary A.7. Let R be a local ring satisfying (S2), with d = depth(R)≥ 1, and let M be an R-module.
Assume the following hold:

(i) Mp is a free Rp-module for all p ∈ Spec(R)−{m}.
(ii) M is torsion-free.

(iii) Extd−1
R (M,M) = 0.

If ExtiR(M,R) = 0 for all i = d, . . . ,2d +1, then pdR(M)≤ d −2.

Proof. We may assume M ̸= 0, and we can use Proposition A.6 for the case where n = 0 and conclude
that pdR(M)< ∞. It follows, as d = depth(R)≥ 1 and M is torsion-free, that depthR(M)≥ 1 (recall that
each non zero-divisor on R is a non zero-divisor on M). Therefore, the Auslander-Buchsbaum formula
shows that pdR(M)≤ d −1. Now, since Extd−1

R (M,M) = 0, 3.4 shows that pdR(M)≤ d −2. □
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